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Abstract

The attenuation of engine vibration transmitted to a chassis has been a major focus in the automotive community for
the increase of comfort for the driver and passengers. A hydro-mount system is designed to reduce the transmission of
engine vibration to the chassis. It is also used for supporting the static load by an engine weight. In this paper, we pre-
sent a modeling and parameter estimation of hydro-mount systems. Nonlinear model aspects are developed and used
with experimental data to validate the model response characteristics. These parameters will be modeled as a variable
vector and its value is estimated via linearized and extended Kalman filter. This approach can help engineers reduce
design time by providing insight into the effects of various parameters within the hydro-mount. Based on the estimated
parameters, the simulation result confirmed that the derived passive model describes the dynamic behavior of the hy-

dro-mount system accurately.
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1. Introduction

An engine mount system has two basic functions:
one is to support the weight of the engine and the other
is to isolate engine vibrations. In vehicles, there are
two significant vibration sources, vibrations from the
engine and vibrations from the ground, which should
be reduced to enhance the comfort of passengers. The
engine vibrations typically contain frequencies in the
range of 20-200 Hz with amplitudes generally less
than 0.3 mm. On the other hand, the main part of chas-
sis vibrations involves frequencies under 30 Hz with
amplitudes greater than 0.3 mm [1-3]. In this paper,
we focus on modeling and parameter estimation of a
hydraulic mount (hydro-mount in short) system.

A hydro-mount system is naturally required to have
a high dynamic stiffness to support the engine weight.
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However, it also should transmit as less vibration from
the engine to the chassis as it can. To achieve this (i.e.,
vibration isolation), the engine mount system should
also satisfy a low dynamic stiffness [3,4]. It is difficult
to meet these conflicting demands with a passive en-
gine mount system. To resolve this problem, an inno-
vative hardware design as well as an efficient vibration
control technique is needed. To reduce the time in
designing a new engine mount for various types of
cars, it is necessary to have a mathematical model to
predict the behavior of the system before it is physi-
cally assembled. A good model is also a key element
when designing an efficient control algorithm for the
system. The closer the response of a mathematical
model is to the real plant, the higher achievement of
control performance.

Even though many researchers have investigated
various hydro-mount systems, the analysis of their
dynamics is not completely resolved yet. Lee and
Singh [5] comparatively evaluated three competing
models at low frequencies by assuming that the mount
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system behaves as a linear time-invariant system. A
lumped parameter linear model was analyzed in [6, 7].
In [8], mechanical models for a single-pumper were
proposed and their dynamic stiffness equations were
derived. The nonlinear characteristics of an engine
mount on the system output frequency behaviors are
analyzed in [9, 10]. Kim and Singh [1] have illustrated
the applicability of such modeling techniques for lim-
ited frequency domains thereby introducing the limita-
tion of the linear modeling techniques. In their work,
they never considered the true decoupler switching
mechanism. Upon the modeling technique in [1], a
number of experiments were carried out for parameter
identification [3, 6, 11-13]. A fluid-structure interac-
tion finite element analysis method and a nonlinear
finite element analysis method were used to determine
the system parameters [14]. In improving the perform-
ance of an engine mount using an efficient and practi-
cal design procedure, all the necessary parameters
were derived from frequency response measurements
[15, 16]. According to the phenomena of fixed points
and the constant value of dynamic stiffness in-phase at
higher bands, a new parameter identification method
was presented in [17-19].

There exist different principles of modeling and pa-
rameter estimation of an engine mount system. The
one that will be presented and modeled in this paper is
based upon real input and output experimental data.
Nonlinear modeling aspects are developed and used
with experimental data to validate the model response
characteristics. A regular hydro-mount is modeled,
and its nonlinear model is linearized, and its values are
estimated via extended Kalman filter (EKF) [20-23].
The objective is to obtain the optimum parameters for
the hydro-mount model. The purpose is to show that
the modeling technique is satisfactory and can serve as
a control model for the hydro-mount system. It is im-
portant that the developed model is highly close to the
reality, because input and output experimental data
that can be used to verify the hydro-mount system are
given. Related to this work, we have not found any
published paper yet on constructing an engine mount
model that uses extended Kalman filter to estimate the
parameters based on experimental data. The parame-
ters of these models are usually determined by the
manufacturer from first-principle numerical calcula-
tions, or by means of direct testing of the individual
components. Based on the estimated parameters, the
simulation results will confirm that the derived passive
model accurately describes the dynamic behavior of

the hydro-mount system.

The contributions of this paper are the following.
First, a new mechanism of a hydro-mount system for
active control is investigated. The proposed one is
realized in the structure of a hydro-pneumatic engine
mount that satisfies the conflicting criterion (i.e., to
have both low and high dynamic stiffness). Therefore,
an equivalent mass-spring-damper model with piston-
cylinder structure is proposed, and a subsequent ma-
thematical analysis on the model yields the transfer
function that describes the passive dynamic character-
istics of the hydro-mount system. Second, nonlinear
model aspects are developed and used with experi-
mental data to validate the model response characteris-
tics. This finally results in a good model that has a
high known correspondence to reality. However, the
use of an extended Kalman filter as parameter estima-
tor is simpler and cheaper instead of determining by
the manufacturer from first-principle numerical calcu-
lations, or by means of direct testing of the individual
components. It is felt that this contribution will help
engineers in reducing mount design time by providing
insight into the effects of various parameters within
the engine mount.

The paper structure as follows. In Section 2, struc-
ture and a new dynamic modeling of the hydro-mount
system are introduced. The mathematical model is
established to obtain the transfer function of the hydro-
mount system that can provide significant information
for the design and control purposes. In Section 3, after
an overview of extended Kalman filter, an application
of the nonlinear parameter estimation algorithm based
on experimental data is proposed. In Section 4, com-
parison of experiment and simulation result is pro-
vided. Conclusions are given in Section 5.

2. Modeling of a hydro-mount

A hydro-mount and its cross-section used in this re-
search are depicted in Fig. 1(a) and Fig. 1(b), respec-
tively. It has two mounting brackets: one for the en-
gine and the other for the chassis. The hydro-mount
consists of a primary rubber, four chambers with dif-
ferent volumes (the upper, working, air, and lower
chambers), and the first and secondary orifices.

Briefly explaining where the hydro-mount is used,
Fig. 2 shows a scheme for the active pneumatic engine
vibration control considered in this paper (two regular
rubber mounts and one hydro-mount will be used).
The actuator in the lower right corner in Fig. 2 is a
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pneumatic system. The air pressure (control force) in
the air chamber in Fig. 1(b) is generated by opening
and closing a solenoid valve. Due to the difference
between the ambient air pressure and the pressure in
the vacuum tank, the air will flow in when the valve is
open. Because of the decoupler, the forces generated
in the air chamber can be transmitted to the engine or
to the chassis. The detailed descriptions on how the
control scheme in Fig. 2 works are left in other work.
In this paper, the mathematical model of the hydro-
mount in Fig. 1 will be the focus.

(a) An engine mount photo (Daeheung R&T Co., Ltd., Ko-
rea)
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(b) A cross-section of the hydro-mount in (a)

Fig. 1. The typical hydraulic engine mount system consid-
ered in this paper.
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Fig. 2. Schematic of the proposed active pneumatic vibration
control scheme using a hydraulic engine mount.

From Fig. 1(b), the functionalities of the hydro-
mount are recapitulated in Fig. 3. Let x(¢) be the
displacements of the engine, and let F(¢) and
Fp(¢) be the engine excitation force and the trans-
mitted force to the chassis, respectively. Let P (¢) and
A, be the pressure and the equivalent area of the upper
chamber. The stiffness characteristics of the primary
rubber is divided into two spring constants: the main
spring constant k, and the bulge spring constant
k , . Since the primary rubber supports the engine, the
stiffness characteristics in the vertical deformation of
the rubber at an equilibrium position is modeled as
the main spring constant, whereas the variation of the
stiffness characteristics of the primary rubber due to
the pressure variation in the upper chamber is mod-
eled as the bulge spring constant. Hence, the bulge
spring constant becomes a function of the pressure in
the upper chamber. The first orifice connects the up-
per chamber to the lower chamber and the second
orifice connects the upper chamber to the working
chamber, in which the orifices will equalize the pres-
sures in individual chamber in the steady state. Also,
to make the hydro-mount stiff in high frequency vi-
brations of the engine, a decoupler between the work-
ing chamber and the air chamber is used. The decou-
pler is made of a rubber or a fabric diaphragm. It can
move freely in the passage connecting the two cham-
bers. Since the mass of the decoupler is small, its
dynamics are neglected in this paper.

Now, the hydraulic flows through the first and sec-
ond orifices can be modeled as a second-order mass-
spring-damper system as in Fig. 4. Let the cross-
sectional areas of first and second orifices be 4; and
A, , respectively. The amount of fluids flowing
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Fig. 3. A functionality diagram of the hydro-mount.
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through two orifices are modeled as equivalent
masses m; and m, , respectively, with damping
coefficients ¢; and c,, respectively, and spring
constants k; and k, , respectively. Let x,(¢),
x;(t), and x,(¢) be the displacements of the pri-
mary rubber, the equivalent mass in the first orifice,
and the equivalent mass in the second orifice, respec-
tively.

In Fig. 4, the force transmitted to the chassis,
Fp(2), is the system output, which is the sum of two
forces that is to be controlled: an engine vibration
force k,x(t) and a hydraulic force in the upper
chamber ApP(¢) . Of course, P(f) changes with
flow changes in the first and second orifices as well as
the change of x(¢) . Now, the force transmitted to the
chassis is expressed as follows,

Fr ()= k,x(t)+ 4, P(t). )

Since the fluid is assumed to be incompressible, the
continuity equation holds as follows,

A,x, ()= Ayx (£)+ Ay, (1) @)

Note that the bulge spring constant is proportional to the
pressure in the upper chamber. Also, the following equ-
ation at an equilibrium point is obtained,

~ P(t)4, =k, x, (1) - x(0)). 3)

The pressure variation in the upper chamber also
makes the fluid to flow through the first and second
orifices as shown below.
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Fig. 4. The final schematic of the hydro-mount for model-
ing: fluid flows included.

my¥; () + e %1 (2) + kyxy () = 4 P(t) “
my¥y (£) + cp% (1) + kyxo () + Fyppe (1) = A P(2) . (5)

where F;,
actuator.

Taking the Laplace transform of Egs. (1)- (5) and
substituting Egs. (2)- (5) into Eq. (1) yields

(t) is the force exerted by the pneumatic

Fr(s)= Als)X(s)= Bs)Fur(s). ©)

bos® +bys> +bys? +bys +b
Als)="20 b13 2 39 +b4 @

s+ ays” + a2s2 +azs+ay

d0S2 + dls + d2

3

Bls)=— 2
S tasT taysT +azstay

; ®

and
a = (1/m1m2)(m162 +myc ),
_ 2 2 2
a2 = (l/mlmzAp )(ml (szp +kpA2)
+my (ki 4, +kpAf)+c1c2A§)
a3 = l/mlmzA; (Cl(sz; + kpAzz)
+c (ki 4, +kpAf))

a4 = l/mlmzA; (k1k2A12; +kpk2A12 +k]7k1A221
by =k, +k,,
by = (1 mymy ) (k, -+, omey +macy))
b2 = (1/”’!171’1214127 )(Ag(kr +kp )(m1k2 + WI2k1 +Cl C2)

+kk, (my A3 +m2A12))
by = (1/m1m2A§ )(Af, (k. +k,)ciky +cky)

+k k()43 +02A12)),
by = (1/ 4 )(Azk k

4 =\l mymy 4, \Apkiky (k. + k)

+kk, (Alk, +A22k1)l
dO = Aka /mzAp, dl = Azkpcl /mlmzAp,
dz = Azkpk] /mlmzAp.

9

A(s) and B(s) are the transfer functions from
the engine displacement to the transmitted force and
from the control input (air force) to the transmitted
force, respectively.
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3. Parameter estimation: extended filter

In Egs. (1)-(5), the coefficients k,, 4,, 4,
A4y, my,and m, are known: k, is obtained from
experiment and all others are calculated using the
geometry of the upper chamber, orifices and liquid
properties. Unknown coefficients are &, , cj,c2,k,
and k, . Since x(¢#) and Fr(r) are measured,
P(¢) is calculated using Eq. (1). In this section,
x;(¢¥) and x,(¢) inEq.(2)and c¢;,c,,k;,and k,
in Egs. (4)-(5) are estimated using the extended Kal-
man filter technique.

Eqgs. (4) and (5) without actuation (i.e., F;. =0)
are now considered. Let
z; () =x;(2), (10)
25, () = x;(2), (11)
D) =c, (12)
24 () = k;, (13)
where i=1,2. Hence,
2(0) = 29, (1), (14)
£2i(1) = 5 (0) = (1 m; )= 21 (0)24; 1)
— 23023, () + 4P(1)), (15)
z3i(1)=0, (16)
z4;(1)=0. (17)

Since P(¢) in Eq. (1) is calculated using the meas-
ured signals x(f) and Fp(f) which are assumed
involves white Gaussian noise, the signal A4; P(t)/ m;
also involves white Gaussian noise w;(¢) inherited

from the measured signals. Then, Egs. (4)-(5) can be
rewritten as

2 (0) +i21i(1)z4i(t) + %221'(1)231'(1)

= 4;(Fr () =k, x(0))/ Apym; + w; (0) . (18)

In the state space form, Eq. (18) becomes

WO | e o)
iyt |_|- 2020 20y
23;(2) ' '
24; (1) 0

0 0
1 1|4; —
+ | i+ M ) (19)
0 0 Apmi
0
The observation equation is
Yi(0) =z () +v; (1), (20)

where v;(f) is an observation noise which is as-

sumed as a white Gaussian noise. The discrete non-
linear plant and linear observation equations for this
model are

T Ry |
z =z +1zp;

k k-1 k-1 k-1 k-1
Z2i=(TZ4i /m; Ji; +(1—T23i /m; Jea;

b AT(E k) g T, @)
k _ k-1

Z3; =Z23i >
k k-1

24i = 24 >
k-1 k-1 k-1

yio =z tvio,

where T is the sampling time. By substituting the
variables x;(¢) in Eq. (10) to Eq. (2), the variable
x,(#) in Eq. (2) can be estimated. Therefore, apply-
ing the value x,(¢) to Eq. (3), the bulge spring con-
stant k), is finally calculated.

4. Experiments and simulations

To make an equilibrium state due to the engine
weight, an 800 N force was applied as a preload to the
experimental sample. In the experimental setup, only
the engine generates vibrations (i.e., the chassis is
stationary), and thus the measured values of x(7)
and Fp(¢) are the net engine displacement and the
net transmitted force to the chassis, respectively. As
discussed in the previous section, this vibration typi-
cally contains frequencies in the range of 20-200 Hz
with amplitudes generally less than 0.3 mm.

To estimate parameters in Eq. (9) using the pro-
posed parameter estimator algorithm Eq. (21), simula-
tions of the hydro-mount using the same engine vibra-
tion data obtained from experiment were carried out.
The used vibration is a typical idle speed of a 4-
cylinder and 4-cycle in-line engine, whose excitation
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frequency is 25 Hz with amplitude of 0.1 mm.

The validity of the model derived in Eq. (6) was
checked: the engine excitation and the actuator vibra-
tion independently contribute to the transmitted force.
As a result, both the passive transfer function Eq. (7)
and the active transfer function Eq. (8) were estimated
separately. Based upon the real input x(¢) and the
output Fr(z), the variables x;(¥) and x,(¢) in

Eq. (10) and the parameters c¢;,c,,k; and k, inEq.

(12) and Eq. (13), respectively, were estimated using
the extended Kalman filter. The comparison between
the simulated and the estimated variables of the first
and the second orifices are depicted in Fig. 5 and Fig.
6, respectively, which show the closeness of both
results. By substituting the estimated variables
x;(¢) and x,(¢) in Eq. (10) to Eq. (2), the variable
x,(¢) is calculated and the result is shown in Fig. 7.
Substitution of the calculated variable x,(¢) to Eq.
(3), the value of the bulge spring constant kp is
calculated approximately 19412 N/m whereas the
remaining parameters were obtained from experimen-
tal and manufacturer.

Using the optimum parameters obtained via EKF
(Fig. 5 and Fig. 6) for the proposed model, the hydro-
mount behaviors are compared. Fig. 8 compares the
output of the experimental data and the model of the
hydro-mount one. The predicted dynamic stiffness
and loss angle spectra of the hydro-mount system for
low frequency are shown in Fig. 9. Although there are
small differences in amplitude and time delay, the
overall results in Fig. 8 and Fig. 9 show that the force
transmitted to the chassis obtained from simulation
match with that from measurements reasonably,
which validate the proposed hydro-mount system
models in Eq. (7).
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Fig. 5. Simulated and estimated variables of the first orifice.

5. Conclusions

In this paper, the modeling and parameter estima-
tion of a hydro-mount system is presented. An
equivalent mass-spring-damper model was proposed
and mathematically analyzed to derive the transfer
functions of passive dynamic characteristics of the
hydro-mount. Nonlinear model aspects are developed
and used with experimental data to validate the model
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response characteristics. Using the input-output ex-
perimental data and the obtained model, the parame-
ters are estimated with extended Kalman filter. Based
on estimated parameters, the simulation result con-
firmed that the derived passive model accurately de-
scribes the dynamic behavior of the hydro-mount
system.
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